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Abstract 

For the past two decades, quantitative retrievals of aerosol optical depth (AOD) have 

been made from both geostationary and polar-orbiting satellites, and the results have 

been widely used in numerous studies. Despite the progress made in improving the 

accuracy of AOD retrievals, there are still major challenges, especially over land. A 

notable one for the so-called Dark-Target (DT) algorithms is building the surface 

reflectance (SR) relationships (SRR) to derive SR in the visible channels from SR in 

the short-wave infrared (SWIR) channel, mainly because these relationships are 

strongly subjected to entangled factors (e.g., viewing geometry, surface type, and 

vegetation state). In this study, we examine the benefits of a new method for deriving 

the SRR using deep learning techniques. The SRR constructed by the deep neural 

network (DNN) considers multiple related inputs, such as the SWIR normalized 

difference vegetation index (��������), viewing geometry, and seasonality, among 

others. We then incorporate the DNN-constrained SRR into a DT algorithm developed 

at NOAA/STAR to retrieve AOD from the Advanced Himawari Instrument (AHI) 

onboard the new generation of geostationary satellites, Himawari-8. The revised DT 

algorithm with the deep learning technique (DTDL) demonstrates improved 

performance over the study region (95–125°E, 18–30°N, a portion of the AHI full disk), 

as attested by significantly reduced random noise, especially for low �������� and 

high surface albedo cases. Robust independent tests indicate that this algorithm can be 

applied to untrained regions, not only to those used in training. The method directly 

benefits the algorithm development for Himawari-8 and can also be adopted for other 
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geostationary or polar-orbiting satellites. Our study illustrates how artificial intelligence 

could significantly improve AOD retrievals from multi-spectral satellite observations 

following this new approach. 
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1. Introduction  

Aerosols critically impact Earth’s climate through modulating the energy budget 

and cloud properties and serve as the primary source of uncertainties to quantifications 

and interpretations of the changing radiation budget of Earth (Ackerman et al., 2004; 

Boucher et al., 2013; Chung et al., 2012; Guo et al., 2017, 2019; Li et al., 2011, 2017; 

Ramanathan et al., 2001). To qualitatively and quantitatively understand aerosols’ 

impact on the climate system, measuring aerosol optical properties using advanced 

remote sensing techniques is increasingly needed (Kahn et al., 2017; King et al., 2003; 

Pavlov et al., 2018; Su et al., 2020a; Wei et al., 2018). Among these properties, aerosol 

optical depth (AOD) is the critical and most widely used product to tackle both 

scientific questions and air quality monitoring (Chu et al., 2002; Guo et al., 2020; Li et 

al., 2015; Lin et al., 2015; Su et al., 2017, 2020b; van Donkelaar et al., 2006; Wei et al., 

2019a, b). This task is especially important and challenging over land due to the 

complexity of underlying land properties and aerosol types (Gupta et al., 2016; Levy et 

al., 2005; Li et al., 2009).  

During the last 20 years, substantial progress has been made in aerosol remote 

sensing techniques for satellites, which is considered the best way to obtain long-term, 

large-scale AOD products (Colarco et al., 2010; King et al., 1999; Li et al., 2009). 

Launched onboard Terra (1999) and onboard Aqua (2002), the Moderate Resolution 

Imaging Spectroradiometer (MODIS) has offered benchmark global AOD retrievals 

over a long period, which have been extensively used in numerous studies (Gupta et al., 

2016, 2018, 2019; Han et al., 2020; 2018; Kaufman et al., 2005; Levy et al., 2007a; Li 
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et al., 2013; Lin et al., 2016; Remer et al., 2008; Su et al., 2018; Wei et al., 2019c, 2020; 

Yu et al., 2006). Following the success of MODIS, measurements from multiple 

geostationary and polar-orbiting satellites have been used to retrieve AOD at regional 

and global scales (Kahn et al., 2009; Laszlo, 2018; Laszlo et al., 2008, 2020; Yoshida 

et al., 2018).  

Several algorithms have been developed to retrieve AOD using data from these 

sensors, with different merits and weaknesses. A widely used algorithm, the Dark 

Target (DT) algorithm, has been employed in multiple sensors (Jackson et al., 2013; 

Kaufman et al., 1997a; Levy et al., 2007b), which has good performance over low 

albedo regions (e.g., dark ocean and dark vegetated surfaces) (Levy et al., 2013). 

Another popular algorithm, the Deep Blue (DB) or ultraviolet method, can provide 

retrievals over bright surfaces with useful accuracy (Hsu et al., 2006, 2013). As a 

relatively new method, the Multi-Angle Implementation of Atmospheric Correction 

(MAIAC) has been used to retrieve AOD at the native 1-km resolution with high 

accuracy (Lyapustin et al., 2011, 2018). Since the DT algorithm was mainly developed 

for relatively dark regions, the DB and MAIAC algorithms offer higher retrieval rates 

and more accurate retrievals over bright surfaces due to their different strategies (Hsu 

et al., 2013; Lyapustin et al., 2018). Among these methods for MODIS, the MAIAC-

derived AOD has the best performance (Liu et al., 2019; Mhawish et al., 2019). 

The abovementioned algorithms work reasonably well for polar-orbiting satellites, 

providing long-term AOD products with extensive coverage. However, the temporal 

resolution for polar-orbiting satellites is limited, while geostationary satellites have 
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great potential to fill this gap (Kim et al., 2008, 2019). An advanced geostationary 

satellite named Himawari-8 was successfully launched on 7 October 2014 by the Japan 

Meteorological Agency. As a vital sensor onboard Himawari-8, the Advanced 

Himawari Imager (AHI) provides spectral reflectance measurements every 10 minutes 

with variable spatial resolutions of 0.5–2 km at different channels covering Southeast 

Asia, East Asia, part of South Asia, and Oceania. With high spatial and temporal 

resolutions, the AHI offers a great opportunity to continuously monitor aerosols over 

Asia in detail (Gupta et al., 2019). Nevertheless, recent studies have revealed that 

Himawari-8 AOD products from the Japan Meteorological Agency still suffer from 

large uncertainties, especially for low Normalized Difference Vegetation Index (NDVI) 

cases (Wei et al., 2019d; Zhang et al., 2019).  

In this study, we focus on improving the DT algorithm, as implemented with 

Himawari-8/AHI observations at the Center for Satellite Applications and Research 

(STAR), National Oceanic and Atmospheric Administration (NOAA) (Laszlo et al., 

2008, 2018a, 2018b). A core part of the DT algorithms is the estimation of spectral 

surface reflectances (SR) in the visible channels (0.47/0.64 µm) from SR in the short-

wave infrared (SWIR) channel (2.25 µm). The usual way to accomplish this is to use 

empirical functions to describe the SR relationships (SRR) between the visible and 

SWIR channels with consideration of the scattering angle and the NDVI at SWIR 

(��������) (e.g., Jackson et al., 2013; Kaufman et al., 1997b; Levy et al., 2007b). Due 

to the complexity of the SR relationships, such empirical regressions usually lead to 

relationships fraught with large biases, a major source of uncertainties in AOD 
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retrievals.  

Since it appears difficult to establish mathematical functions in closed form that 

accurately characterize the SRR, deep learning techniques may offer a better way to 

deal with the task. The multi-layer artificial neural network, a primitive deep learning 

technique, has been widely employed (Cireşan et al., 2012; Liu et al., 2017; Seide et al., 

2011) for a variety of environmental and geographical studies (e.g., Deng and Yu, 2014; 

Ma et al., 2020; Tong et al., 2019). Hence, we use the multi-layer neural network (i.e., 

the deep neural network, or DNN) to construct the SRR that accounts for the influences 

of multiple variables (��������, viewing geometry, time, etc.). The DNN-constrained 

SRR is then incorporated into the NOAA/STAR DT algorithm. The revised DT 

algorithm with deep learning techniques (DTDL) provides an example of how deep 

learning could improve retrievals of AOD from multi-spectral satellite observations. 

The paper is structured as follows: General information about multi-source data 

used and preprocessing are presented in Section 2. Section 3 describes the SRR 

constructed by traditional fitting and by the DNN. Section 4 presents the methodology 

of the revised algorithm DTDL. The objective of this paper is to test the application of 

a deep learning technique for deriving SRR and to demonstrate the improvement in 

AOD retrievals. Therefore, we only present the most relevant features of the algorithm 

in Section 4. An evaluation of the new algorithm is demonstrated in Section 5. Section 

6 presents a summary and concluding remarks.  
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2. Data and Instruments 

2.1. Himawari-8/AHI sensor 

The new generation of geostationary satellite Himawari-8 carrying AHI was 

launched on 7 October 2014 and became operational on 7 July 2015. AHI is able to 

image East Asia every 30 seconds while offering full-disk coverage of the Pacific region 

(longitude: 80oE – 160oW, latitude: 60oS – 60oN) every 10 minutes from a 

geostationary orbit over the equator at ~140°E 

(https://www.data.jma.go.jp/mscweb/en/product/library_data). Table S1 summarizes 

the characteristics of the spectral channels of AHI. The NOAA/STAR over-land AOD 

algorithm uses five shortwave channels (1, 3, 4, 5, and 6) with central wavelengths of 

0.47, 0.64, 0.86, 1.61, and 2.25 µm. The nominal spatial resolutions of observations in 

these channels are, in order, 1, 0.5, 1, 2, and 2 km. To provide consistent inputs, 

observations from the higher-resolution channels are averaged to the lowest spatial 

resolution of 2 km, with a temporal resolution of 30 min. Due to the focus of our current 

project, we obtained AHI data over a specific region (95–125°E, 18–30°N) in 2017 (see 

Fig. 1). We analyze data from 00:00 to 09:00 UTC, which corresponds to the daytime 

over the region studied.  

 

2.2. Ground AOD measurements 

In this study, we utilize ground-based AOD datasets obtained from two observation 

networks: the Aerosol Robotic Network (AERONET) and the Chinese Sun–Sky 

Radiometer Observation Network (SONET). The ground-based observation network of 
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sun and sky scanning radiometer, AERONET, provides aerosol retrievals under clear-

sky conditions every 15 min. It is widely utilized to evaluate aerosol retrievals derived 

from satellites (Giles et al., 2019; Holben et al., 1998; Li et al., 2014). With reported 

uncertainties of 0.01–0.02, AOD retrievals derived from AERONET are much more 

accurate than any satellite retrieval (Eck et al., 1999) and have thus been regarded as 

“ground-truth”. Version 3 Level 1.5 AOD products derived from AERONET are used 

in our study (https://aeronet.gsfc.nasa.gov/). The ground-based CIMEL radiometer 

network in China, SONET (http://www.sonet.ac.cn/), uses the same instruments and 

algorithms as used in AERONET, with a similar uncertainty of 0.01–0.02 (Li et al., 

2018).  

Here, we used data from 16 AERONET sites and 2 SONET sites for cloud-free 

scenes over the study region (Fig. 1). The AERONET and SONET AOD retrievals are 

typically available at multiple wavelengths (i.e., 440, 500, 675, 870, and 1020 nm). 

Following Eck et al. (1999), a quadratic fit is used to characterize the relationship 

between the logarithm of AOD and the logarithm of wavelength. The AOD at 550 nm 

is then interpolated, based on the relationship between AOD and wavelength. The 

ground-based AODs at 550 nm are used in two ways. They provide the AOD input 

needed to estimate the SR from which the SRR is built (see Section 3.1). They are also 

the source of “ground-truth” in the evaluation of AHI-retrieved AOD (see Section 5). 

 

2.3. Auxiliary data 

An external cloud mask serves as input for identifying clear-sky pixels for both 
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establishing the SRR and aerosol retrievals. The external cloud mask (Heidinger et al., 

2016) is produced upstream to the AOD retrieval, and as such, it is not part of the AOD 

algorithm. The cloud mask is processed at the same temporal and spatial resolutions as 

the AHI measurements. Note that the presence of cirrus clouds in a scene is usually 

detected by the 1.38-µm channel in other satellites (Gao et al., 1995, 2002). Due to the 

lack of a 1.38-µm channel on AHI, cirrus is primarily identified by the 11- and 12-µm 

split-window test. We note that other methods also exist for detecting cirrus in an AHI 

pixel. For example, Imai and Yoshida (2016) developed a CO2 slicing technique. We 

also use the land/ocean mask to choose the appropriate algorithm (land or ocean) for 

retrieving AOD.  

Total amounts of water vapor and ozone, surface wind field, pressure, and surface 

altitude are obtained at a horizontal resolution of 0.5°×0.5° from the National Centers 

for Environmental Prediction Global Forecast System (GFS) model data at a 3-hr 

interval (https://www.nco.ncep.noaa.gov/pmb/products/gfs/). These data are 

interpolated to match the uniform spatial resolution of 2 km and the temporal resolution 

of 30 min of the AHI reflectance data. In particular, model data are linearly interpolated 

to match the times of satellite observations. For a given satellite pixel, we use the model 

data closest to the pixel. The temporal and spatial resolutions of GFS data are coarser 

than those of the satellite data. Thus, interpolation inevitably leads to some uncertainties. 

Note that the model itself also suffers from considerable uncertainties. However, since 

observations are not available everywhere, the only feasible option is using model or 

reanalysis data.  
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 190 

3. Spectral surface reflectance relationships 

SR estimated by SRR is one of the most important factors affecting the accuracy of 

AOD retrievals over land (Kaufman et al., 1997b; Levy et al., 2007b). Similar to the 

DT algorithm for MODIS (Remer et al., 2005), the National Environmental Satellite, 

Data, and Information Service/STAR DT algorithm (Laszlo et al., 2018a) retrieves SR 

(simultaneously with AOD) using empirical relationships between the SRs in the blue 

(0.47 µm), red (0.64 µm), and SWIR (2.25 µm) bands of dark, dense vegetation. 

Kaufman et al. (1997b) explained that the existence of such relationships is the result 

of the correlation between chlorophyll (which absorbs radiation in the red/blue band) 

and liquid water (which absorbs radiation in the SWIR band). 

The estimation of spectral SR needed to build the relationships is described next. 

This is followed by showing “traditional” regression-based relationships and an 

improved relationship derived by applying a deep neural network. 

    

3.1. Estimation of SR 

SRs at 0.47, 0.64, and 2.25 µm needed to determine the relationships between them 

are estimated from the AHI reflectances by accounting for atmospheric effects. 

Following Vermote et al. (1997a), we use the NOAA/STAR DT AOD algorithm that 

calculates the surface and atmospheric contributions to the top-of-the-atmosphere 

(TOA) reflectance. Assuming a Lambertian surface, contributions of the surface (��
��) 

and atmosphere (����) to the TOA reflectance (����) are calculated as (Vermote et al., 
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1997a, 1997b): 

� = ������ ��
�� � �� ��↓����↑ � ��
��� $      (1)1 − #����  

 ��
+� = ��������� �'���� − ��(())*� �, �� + ��(()$    (2) 

���� = ���� + ��
��                             (3) 

where ��� indicates the transmittance from absorption contributed by gases other than 

water vapor and ozone; ���  represents the transmittance from ozone 

absorption; � 0��� and �����
 are the transmittances from total and half column water 

vapor absorption, respectively; �↓���/�↑��� indicate the total (i.e., direct plus diffuse) 

downward/upward atmospheric transmissions; #���  represents the atmospheric 

spherical albedo; ��(() represents the Rayleigh reflectance contributed by molecular 

scattering at the real surface pressure (P); ����  represents the path reflectance by 

molecules and aerosols at the standard surface pressure (P0); and � ��  is the 

Lambertian land surface reflectance. When everything needed to calculate ����  is 

known, ��
��  is determined from Eq. 3. Equation 2 is then solved for the surface 

reflectance � ��. We apply this process at the AERONET/SONET sites where AOD is 

known from ground-based measurements.  

Radiative properties of aerosols (normalized extinction coefficient, phase function, 

and single-scattering albedo) required to calculate reflectances and transmittances are 

currently prescribed by one of four candidate aerosol models (generic, urban, smoke, 

and dust) identified by the NOAA/STAR DT algorithm as part of the AOD retrieval. 

We recognize that this aerosol model may not be optimal for two reasons. First, the 

candidate models only represent broad categories of aerosol properties. For a particular 
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retrieval, the actual property of aerosols likely differs from the property prescribed by 

any of the candidate models. Second, since the model selection is influenced by the 

SRR used in the DT algorithm, uncertainties in SRR contribute to the uncertainty in the 

model selection, especially when the 550-nm AOD is larger than about 0.5, i.e., when 

the radiative properties of candidate aerosol models differ the most from each other. For 

the dataset used in this study, this applies to only about 30% of the samples. The 

approximate threshold of 0.5 applies only for the generic and urban models and for the 

normalized extinction of the smoke model. Radiative properties of dust and the single-

scattering albedo and phase function of smoke are different from those of the generic 

and urban models, even at optical depths smaller than 0.5. The impact of erroneous 

model selection is expected to be somewhat mitigated by screening out low-quality 

retrievals, which, among other factors, are associated with poor agreement between the 

observed and calculated TOA spectral reflectances, which can happen when the aerosol 

model picked by the retrieval is likely in error. Even though the calculated SR suffers 

from multiple sources of uncertainties (e.g., the Lambertian assumption, aerosol optical 

properties, and aerosol vertical distribution), it is still considered suitable for retrieving 

AOD because the same assumptions are made in the AOD retrieval. Thus the SRs 

calculated from Eqs. 1–3 are considered as “ground truth”. 

Calculations of ���� and ���  require the column amounts of water vapor and 

ozone, respectively. These parameters, along with other meteorological parameters 

needed in Eq. 1, are obtained from the GFS. Laszlo et al. (2018a) provide details of 

calculations of all gaseous transmittances, including ��� and Rayleigh reflectance. In 
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constructing the database used for establishing SRR, all available 2-km SR retrievals 

are averaged within 10 km around the ground sites. 

 

3.2 SRR from regression 

The absorption of liquid water and chlorophyll at visible (e.g., blue or red bands) 

and SWIR wavelengths are related to the state of the vegetation. The relationships of 

spectral SR are also affected by the vegetation state, as well as seasonality (Kaufman 

and Remer, 1994; Kobayashi et al., 2007; Remer et al., 2001). The state of vegetation 

is usually characterized by the top-of-canopy NDVI. However, because this NDVI 

requires knowledge of AOD, �������� is used as an aerosol-independent measure of 

the vegetation state, in practice. It is defined as (Levy et al., 2007b): 

�������� = (��+.2+ − ��,.,3)/(��+.2+ + ��,.,3)           (4) 

where ��+.2+ and ��,.,3 are the AHI-measured reflectances at 1.61 µm (channel 5) and 

2.25 µm (channel 6), respectively.  

Figure 2 presents the scatterplots of #6).78 (Fig. 2a-b) and #6).27 (Fig. 2c-d) as 

a function of #6,.,3, with colors representing values of �������� (left panels) and 

scattering angle (right panels). Hereafter, #69 represents the SR at wavelength λ (i.e., 

0.47, 0.64, and 2.25 µm). Despite the scatter, higher SR is generally associated with 

lower �������� and higher scattering angles. The simplest linear regressions in the 

form of Y = m + n X, where m and n are constants, are also shown. These simple linear 

regressions cannot fully characterize the SRR between visible and SWIR channels, so 

it is necessary to add �������� and scattering angle into the empirical relationship 
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between SR in multiple channels (Laszlo et al., 2018a; Remer et al., 2013). Table 1 

presents the SRR obtained this way and used in this study as one of the possible 

empirical functions to represent the SRR. The regression coefficients are derived from 

the least-squares method for multiple parameters (Bühlmann and Van De Geer, 2011).  

 

3.3. SRR from DNN 

We adopted the DNN to derive SR at the visible channel (0.64 µm) from SR at the 

SWIR channel (2.25 µm). The DNN is designed based on the structure and functions 

of the nervous system and the brain, which can contain a large number of interconnected 

individual elements (i.e., artificial neurons) working in parallel (Cireşan et al., 2012; 

Sarle, 1994; Seide et al., 2011). Using a sufficient dataset to train the model, a DNN 

model can provide a predicted output for new input data due to its learning ability 

(Schmidhuber, 2015).  

 Instead of specific functions, we use the DNN to train the relationship between 

#6).27  and #6,.,3  based on measurements within 10 km around the 

AERONET/SONET sites. Based on the previous descriptions and Eqs. 1–3, we add 

additional inputs, including �������� , scattering angle, TOA reflectances at 

0.47/0.64/2.25 µm, seasonality, column amount of ozone, column amount of water 

vapor, and the pressure at the surface level. Meteorological parameters are obtained 

from the NCEP GFS. The seasonality is classified as winter (December–January–

February), spring (March–April–May), summer (June–July–August), and autumn 

(September–October–November). The four seasons are denoted as 1, 2, 3, and 4, 
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respectively. The seasonality is then used in the DNN training and prediction. Due to 

the nonlinearity in the relationships among various parameters, the DNN model is based 

on the Bayesian regularization approach for tracking various nonlinear functions 

(Burden and Winkler, 2008). The maximum number of epochs is set as 10,000 to allow 

sufficient training. As shown in Fig. 3, the corresponding input data are extracted from 

a geographical grid. The input data are then interconnected with multiple neurons 

within the hidden layers. Figure 3 also shows the architecture of neurons in the hidden 

layers. The total number of hidden layers is n+3, where n can be adjusted as needed. 

The first and second hidden layers have 8 and 4 neurons, respectively, and the last 

hidden layer has one neuron. Other hidden layers have two neurons. The neuron is a 

processing element that sums the inputs and weights. The strengths and importance of 

the connections are represented by neuron biases and weights, which are automatically 

adjusted in the training process. The predicted #6).27 would then be generated for a 

given grid based on the training model.   

 

3.4. The performance of SRR derived from regression and DNN 

The performance of the empirical function in the traditional approach is shown in 

Fig. 4a that plots the 0.64-µm SR estimated from the empirical function as a function 

of the “true” 0.64-µm SR obtained from the AHI TOA reflectance and the ground-

observed AOD using Eqs. 1–3. The plot shows a fair amount of scatter for individual 

retrievals that could lead to considerable errors in AOD. The empirical function is also 

likely to underestimate at the high end and overestimate at the low end of the “true” SR 
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values.  

For evaluating the performance of the DNN model, we use the sample-based cross-

validation (CV) technique (Rodriguez et al., 2010). For the CV process, we randomly 

choose 70% of the total samples for training, then utilize the remaining 30% of the 

dataset for validation. Such a procedure is repeated ten times to avoid biases in the 

selection. Basically, the data sample size for validation is expanded ten times, while the 

samples do not overlap with the training data. Figures 4b-e present the scatterplots of 

the 10-CV results of #6).27  for different numbers of hidden layers with the 

architecture shown in Fig. 3. Samples of 10-CV are three times the original dataset. The 

number of neurons is a critical parameter in the DNN but does not significantly affect 

the DNN performance in this study. Despite a slightly larger bias when the number of 

hidden layers is three, DNN-derived #6).27  shows consistent performance for 

different numbers of neurons. With the smallest root-mean-square error (RMSE), we 

set the total number of the hidden layers to 7 and the total number of neurons to 27. In 

the architecture constructed in our study, the DNN predicts SR0.64 with RMSEs and 

mean absolute errors (MAEs) that are about a third of those predicted by the empirical 

function, as shown in Fig. 4. 

Following previous studies (e.g., Gupta et al., 2016), we still use an empirical linear 

relationship to calculate #6).78  from #6).27  (Fig. S1). The linear regression 

predicting #6).78  from #6).27  captures the overall, dominant characteristics of the 

true #6).78  and results in a relatively good correlation coefficient (0.9). But the 

residual error of the linear fit is still considerable because of the large scatter in the data. 
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In the current stage, we do not use the DNN to train the relationship between #6).78 

from #6).27 because we found that the DNN may predict unphysical values of #6).78 

based on preliminary analyses (e.g., smaller than 0 or larger than 0.3, the maximum 

value expected for the vegetated surface at this wavelengths). However, we do not rule 

out the possibility that the DNN may improve the performance of retrieved #6).78 

with appropriate inputs and architecture. Based on the linear fitting of SR, we use a 

simple regression (#6).78 = 0.86 × #6).27 − 0.02) to derive #6).78 from the DNN-

derived #6).27. To avoid negative values, #6).78 is set to 0.01 when #6).27 is less 

than 0.025.  

 

4. Dark-target – Deep-learning (DTDL) algorithm 

4.1. The algorithm combining the DNN and the DT method 

We implemented the DNN scheme for the SRR into the NOAA/STAR DT 

algorithm for Himawari-8/AHI. This DT algorithm follows the approach applied to the 

GOES-R Advanced Baseline Imager and described in more detail by Laszlo et al. 

(2018a). For this DT algorithm, the land aerosol models are adopted from previous 

studies for MODIS (Levy et al., 2007a; Remer et al., 2006). Detailed information about 

these aerosol models can be found in Table S2. There are notable uncertainties in the 

AOD retrievals associated with assumed aerosol models, which may lead to 

uncertainties of more than 10% in the retrievals (Jeong et al., 2005; Mielonen et al., 

2011; Tirelli et al., 2015; Wang et al., 2017; Wu et al., 2016). This is very difficult to 

solve since we cannot actually obtain or retrieve the real aerosol model from 
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monodirectional, multispectral intensity measurements alone. Moreover, different types 

of aerosols are mixed in the real atmosphere and show large vertical variations. Such 

complex information may not be conveyed by some common aerosol models (Li et al., 

2020). Unlike oceans, the surface properties of land demonstrate large variability and 

great complexity, making modeling the spectral SR difficult. The bias in SR further 

serves as a major source of uncertainties in the aerosol retrieval over land. The SRR 

trained by the DNN is expected to mitigate the problem.  

The retrieval algorithm can be described as searching for the pair of AOD and SR 

that leads to calculated TOA reflectances which best fit the observed TOA reflectances 

at 0.47, 0.64, and 2.25 µm. Instead of directly using a radiative transfer model (i.e., 6SV 

v1.1), a look-up table (LUT) of necessary terms for several candidate aerosol models, 

AOD values, and geometries was generated, based on the 6S vector radiative transfer 

model (Vermote et al., 1997a) for efficient calculations. Figure 5 outlines the procedure 

of simultaneous AOD retrievals and SR. For each aerosol model, an iterative procedure 

is presented by looping over the AOD values in the LUT in ascending order. For a 

specific step i in the loop, a value of #6,.,3 is calculated from the AOD and the TOA 

reflectance in the SWIR channel. #6).27 is then directly estimated through the DNN-

trained SRR described in Section 3.1.1. #6).78 is calculated from the DNN-derived 

#6).27, based on linear regression. The TOA reflectance at 0.47-μm (�).78,>) is derived 

from ?33),>  and #6).78 . The loop over the AOD values is terminated when �).78,> 

converges to the observation (��@�).78). For the current aerosol model, the AOD retrieval 

is further estimated based on linear interpolation. Furthermore, the corresponding TOA 
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reflectance at 0.64 μm is calculated from the current AOD retrieval and #6).27. The 

associated residual is calculated as the squared difference between the observed TOA 

reflectance and the calculated TOA reflectance at 0.64 μm. By looping the aerosol 

model, the AOD retrieval is selected as the solution with the smallest residual. 

 

4.2. Quality control 

In the NOAA/STAR DT algorithm, several external masks and internal tests are 

applied to screen out unsuitable pixels and control the quality of AOD retrievals. Details 

of the procedures are provided by Laszlo et al. (2018a), but here, we summarize the 

major ones for completeness. First, pixels with ��@�).78 > 0.4 are deemed as cloudy or 

too bright for the aerosol retrieval and are excluded. An internal snow test and 

ephemeral water test are then applied, following previous studies (Jackson et al., 2013; 

Walton et al., 1998). An internal inhomogeneity test is also performed to further screen 

pixels. Detailed information on these tests is provided in the publicly available 

algorithm theoretical basis documents referenced by Laszlo et al. (2018a). Based on the 

retrieval residual, external masks, and internal tests, the AOD retrievals are classified 

into four quality levels (i.e., no retrieval, low quality, medium quality, and high quality). 

Following Laszlo et al. (2018a), Table S3 summarizes the criteria for determining the 

quality level of AOD retrievals. Cases with no retrieval and low quality are excluded in 

our analyses, including those presented in Section 3. 

388 

389 

390 

391 

392 

393 

394 

395 

396 

397 

398 

399 

400 

401 

402 

403 

404 

405 

406 

407 

 408 



 

 21 

5. Evaluation of AOD retrievals 

5.1. An Overview of AOD retrievals from the DTDL algorithm 

After implementing the DTDL algorithm, AOD retrievals at 550 nm were made 

from Himawari-8/AHI over the study region during the period 1 January 2017 to 31 

December 2017 at a 2-km spatial resolution. To isolate the changes in the retrievals 

caused by the SRR, retrievals from the DTDL algorithm used the same inputs as the DT 

algorithm. Figure 6a shows the medium- and high-quality AODs that are used in the 

evaluation. Several polluted regions associated with high population densities are 

identified with relatively high AOD values, including the Red River Delta, the Sichuan 

Basin, western Taiwan, and the Pearl River Delta. The available retrieval rate is 

calculated as the number of available AOD retrievals divided by the total number of 

samples (~3600), which is around 20% for plains with dense vegetation. It is much 

lower for arid regions due to the relatively brighter surface (Fig. 6b). The spatial 

distributions of averaged AOD and retrieval rates during daytime for high-quality 

AODs are presented in Fig. S2. The AOD pattern is similar for high-quality cases in 

terms of spatial distribution, but the retrieval rates are generally less than one-third of 

the total sampling. The DTDL algorithm uses the same framework as the DT algorithm. 

The retrieval rates of the DTDL and the DT algorithms are thus the same when AOD is 

not filtered for quality. By contrast, algorithms, like the MAIAC algorithm, that provide 

retrievals over a wide range of surfaces (Mhawish et al., 2019) are expected to have 

higher retrieval rates than those of the DTDL algorithm. 

We also compare the diurnal variation in AODs retrieved from Himawari-8/AHI 
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measurements and those derived from ground measurements (Fig. 7). These diurnal 

variations are averaged from data for the year 2017. AHI retrievals matched with ground 

measurements from 18 sites are used to avoid biases due to sampling differences caused 

by quality control. The ensemble of all matched data is then used in the analyses of the 

AOD diurnal variations. In general, aerosol loading based on ground data slightly 

increases between 00:00–02:00 UTC, reaching a maximum value around 02:00 UTC, 

and gradually decreasing thereafter. The AHI AOD retrievals derived from the original 

DT method have a very different diurnal pattern. DT-derived AODs generally decrease 

until about 02:00 UTC, reaching a maximum around 06:00 UTC. As a result, the largest 

bias exists around 02:00 UTC when the ground AOD reaches its maximum, and the DT-

derived AOD is much lower. However, the mean bias of DT is not always larger than 

the DTDL bias. For example, it is slightly smaller than that of the DTDL at 05:00 UTC. 

The diurnal biases for the original DT and the DTDL algorithms during different 

seasons are presented in Fig. S3. The considerable mean bias of the DT retrievals 

around 02:00 UTC is likely caused by the large bias during spring (Fig. S3). After 

implementing the DTDL method, the systematic biases during spring diminish 

considerably. The AHI AOD retrievals from the DTDL algorithm show higher 

consistency with the ground AOD measurements in all seasons. Some features in AOD 

biases are shared by the original DT and DTDL algorithms, such as the overestimation 

in AOD retrievals at 00:00 UTC. Such systematic biases need to be considered when 

using AHI AOD retrievals in this region. 
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5.2. Validation of AOD retrievals against ground measurements  

Figure 8a-b show comparisons between ground-measured AOD and AOD derived 

from the original DT algorithm for medium-quality and high-quality data. Figure 8c-d 

show comparisons between ground-measured AOD and AOD derived from the DTDL 

algorithm. Note that 70% of ground AOD measurements used in model training are 

excluded from the analysis. The AODs retrieved from the DTDL algorithm are 

generally improved for both medium-quality and high-quality categories. With the new 

DTDL algorithm, DNN-based SRR, the uncertainties (represented by the MAE) of the 

AHI retrievals are reduced by about 30%. Such a significant reduction in noise 

considerably improves the quality of the AOD product. 

The DTDL method is able to produce better AOD retrievals over a region even 

though the training takes place in another region. Additional independent tests were 

performed to demonstrate this. The study region was divided into four regions: R1 and 

R2, defined by latitude, and L1 and L2, defined by longitude (Table 2). We use the 

dataset from R1 to train the model and validate the results over R2. Such a test is 

repeated for each region. Figure 9a-d shows comparisons between ground-measured 

AOD and DT-derived AOD for the four regions. Figure 9e-h shows comparisons 

between ground-measured AOD and DTDL-derived AOD for R1, R2, L1, and L2, 

while the training datasets are obtained over regions R2, R1, L2, and L1, respectively. 

This process ensures the independence of training and validation datasets. Medium-

quality and high-quality retrievals are jointly used here. For all four regions, the DTDL-

derived AOD shows notable improvement in all three metrics used to measure quality 
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(i.e., correlation coefficient, RMSE, and MAE). The uncertainties of AOD retrievals by 

DTDL are reduced by 15–25%. The same procedure is performed for high-quality cases, 

producing similar results (Fig. S4). Thus, the DTDL algorithm not only performs better 

in regions with training data but also consistently performs better than the traditional 

DT algorithm over untrained regions. 

Regarding the original DT method, the empirical relationship leads to a large bias 

in estimated SR and can further contribute to the notable uncertainties in AOD retrievals. 

By implementing a DNN model, multiple contributing factors for the SRR, such as 

meteorological data and seasonality, can be taken into consideration. The DNN model 

appears to be a good way to characterize the complex and nonlinear SRR between 

visible and SWIR channels. The accuracy of AOD retrievals considerably benefits from 

the improved SRR derived from the DNN. Many factors contribute towards the biases 

in AOD retrievals, such as surface reflectance, cloud contamination, aerosol model, and 

aerosol vertical distribution, among others. In this study, we have focused on refining 

the surface reflectance assumption, but we also bear in mind that other factors can 

contribute to the error in AOD retrievals. 

 

5.3. Uncertainty related to various factors 

Since the quality of satellite AOD retrievals depends on the underlying surface and 

viewing geometry, we calculate the mean absolute differences between the AOD 

retrievals from ground measurements and AHI under various conditions. Figure 10 

shows the average absolute bias of AOD for different values of #6).78 , #6).27 , 
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��������, and scattering angle for medium-quality and high-quality retrievals. The 

mean absolute biases for the original DT and DTDL algorithms are 0.15 and 0.1, 

respectively. However, the absolute biases in DT-derived AOD can be very large for 

scenes with a high albedo and low NDVI. This is because the biophysical relationship 

is valid for dark and dense vegetation but less valid for arid and bright surfaces 

characterized by low NDVI and a high albedo. Note that the frequency of occurrence 

of high albedo in the region studied is low. Thus, even relatively few outliers can 

considerably affect the average calculated from AOD over regions with a high surface 

albedo.  

Compared with the original DT algorithm, the absolute bias of the DTDL algorithm 

is systematically reduced under various conditions. In Fig. 10, the shaded parts 

represent standard deviations that are generally larger for the original DT algorithm 

than for the DTDL algorithm. The traditional DT method cannot deal well with 

relatively bright surfaces or less vegetated surfaces. Although the DTDL algorithm is 

also significantly affected by these factors, the revised method can considerably 

mitigate this issue. The absolute biases of high-quality retrievals as functions of SR, 

��������, and scattering angle are presented in Fig. S5. The pattern of change in biases 

with these variables is similar to that shown in Fig. 10 for the combined medium- and 

high-quality retrievals, but the magnitude of the biases is smaller. The DTDL algorithm 

also produces smaller absolute biases in AOD retrievals at all 18 sites (Fig. S6). 

The biases in AOD retrievals are considerably reduced after implementing the DNN-

derived SRR in the DTDL algorithm. However, since the visualization of a deep 
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learning model is generally insufficient, interpretability and casualty have been widely 

recognized as major weaknesses of the DNN (Runge et al., 2015; Zhang et al., 2018), 

which may be addressed in the future (Montavon et al., 2017; Reichstein et al., 2019). 

Currently, we only compare the original DT and DTDL algorithms in this study since 

there is no public Himawari-8 AOD product from the other two major methods (DB 

and MAIAC).  

 

6. Summary 

In this paper, we developed a new method (DTDL) that combines the traditional 

DT approach, as applied in the NOAA/STAR AOD algorithm for AHI, with a deep 

learning technique (i.e., DNN) to improve estimates of spectral SR needed for AOD 

retrievals. The core part of the algorithm for retrieving AOD is a radiative transfer 

model represented by a LUT. The DTDL algorithm still keeps this part (i.e., the LUT) 

but changes how the surface reflectance is estimated. Due to the complexity of land 

surface properties, the difficulty in modeling spectral SR constitutes a major source of 

uncertainties in AOD retrievals in the DT algorithm. The DTDL algorithm applies the 

DNN to infer the surface albedo at the visible channel and to tackle the nonlinear 

relationship between multiple, mutually dependent parameters. The improvement in 

characterizing SRR leads to better AOD retrievals.  

One year of the Himawari-8/AHI dataset is employed for the evaluation of the 

proposed method. The DTDL algorithm demonstrates better performance over the 

study region, with a ~30% reduction in random noise. AOD retrievals are significantly 
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affected by the albedo and vegetation state of the underlying surface. Low NDVI and 

high albedo are associated with each other and are two major factors contributing to 

large biases in AOD retrievals by the DT algorithm. After applying the DNN-derived 

SRR in the DTDL algorithm, this problem is lessened considerably. Four independent 

tests are carried out to train and test in different regions to ensure the applicability of 

the DTDL algorithm. The DTDL algorithm consistently produces better retrievals than 

the traditional DT algorithm over untrained regions, with a ~20% reduction in 

uncertainties.  

Due to its stability and accuracy, the DTDL algorithm has a large potential for 

improving aerosol retrievals over land. The comprehensive evaluation provides firm 

support for our method in the study region. Although this area spans thousands of 

kilometers, it is still limited to a portion of the AHI full disk. The surface measurements 

of AOD at the 18 sites under study do not cover all underlying surface conditions. 

Therefore, the application of the DTDL algorithm to a larger area is warranted to gain 

a full understanding of the representation and adaptability of this method. The deep 

learning technique and strategy may also be revised and improved in the future.  

As pointed out by Reichstein et al. (2019), a physical scheme and deep learning 

can be complementary, and their fusion offers great potential for geoscientific analysis. 

Our study successfully implements this strategy and shows the potential application of 

such a hybrid method combining the physical approach and deep learning. Our study 

demonstrates how artificial intelligence could significantly improve AOD retrievals 

from multi-spectral satellite observations. 
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Table 1. Empirical functions relating surface reflectances (SR) at 0.47, 0.64, and 2.25 

µm. Θ indicates the scattering angle. NDVISWIR is the shortwave infrared normalized 

difference vegetation index. 
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Table 2. Classification of different regions for independent tests. 937 

938  

Region code Classification Number of sites  

R1 Latitude > 23oN 9 

R2 Latitude < 23oN 9 

L1 Longitude > 110oE 12 

L2 Longitude < 110oE 6 
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 954 

Fig. 1. Spatial distribution of terrain height (unit: m) of the study region. Red dots 

indicate the 16 AERONET sites, and pink dots indicate the 2 SONET sites used in our 

study.  
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 962 

Fig. 2. (a, b) The linear regression between #6).78 (surface reflectance at 0.47 µm) 

and #6,.,3  (surface reflectance at 2.25 µm). (c, d) The linear regression between 

#6).27  (surface reflectance at 0.64 µm) and #6,.,3. In (a, c), the color-shaded dots 

indicate the corresponding �������� . In (b, d), the color-shaded dots indicate the 

corresponding scattering angle. The black solid lines and error bars represent the 

average values and standard deviations for each bin, which divides the x-axis into ten 

equal parts. The regression equations and correlation coefficients (R) are given at the 

top of each panel. The SR data are derived from matched ground AOD and AHI data. 
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  971

Fig. 3. Diagram describing the deep neural network (DNN) used to derive ).27 . 

#6).78 is calculated from #6).27, based on a simple linear function (Table 1). 
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 974 

Fig. 4. (a) Density scatterplots of the comparison between surface reflectance (SR) at 

0.64 µm (SR0.64) predicted by the empirical function and SR0.64 calculated from Eqs. 1–

3, the “true” surface reflectance. (b-e) Density scatterplots of 10-cross-validation results 

for SR0.64 derived from DNN, considering different numbers of hidden layers in the 

DNN model. The correlation coefficients (R), root-mean-square errors (RMSE), and 

mean absolute errors (MAE) are given in each panel. The solid black lines represent the 

best-fit lines from linear regression. The dashed grey lines are plotted as Y=0.8X and 

Y=1.2X (positions of 20% error). 
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 983 

Fig. 5. Flowchart of the DTDL algorithm for retrieving AOD for clear pixels over land. 

The modules enclosed by the red, dashed lines represent updates the DTDL algorithm 

introduced into the NOAA/STAR DT algorithm. 
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 987 

Fig. 6. Spatial distributions of (a) mean aerosol optical depth (AOD) and (b) available 

retrieval rate derived from the DTDL algorithm for the year 2017. 
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 993 

Fig. 7. Diurnal variation in Himawari-8/AHI AOD retrievals derived from (a) the 

original DT and (b) the DTDL algorithms for the year 2017. Here, all matched pairs of 

AHI retrievals and ground measurements are used. The diurnal variation derived from 

ground-based measurements is shown in red, and the bias between AHI and ground 

AODs is shown in grey. The shaded areas represent the standard deviations.  
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Fig. 8. Comparisons between AERONET AOD and AOD derived from the original DT 

method for (a) medium-quality and (b) high-quality data for the year 2017. 

Comparisons between AERONET AOD and AOD derived from the DTDL method for 

(c) medium-quality and (d) high-quality data for the year 2017. The dashed grey lines 

are plotted as Y=0.8X and Y=1.2X (positions of 20% error). The correlation 

coefficients (R), root-mean-square errors (RMSE), number of samples (N), and mean 

absolute errors (MAE) are given in each panel.  
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Fig. 9. Comparisons between AERONET AOD and AOD derived from the original DT 

method for regions (a) R1, (b) R2, (c) L1, and (d) L2. Comparisons between AERONET 

AOD and AOD derived from the DTDL algorithm for regions (e) R1, (f) R2, (g) L1, 

and (h) L2, with the training datasets obtained over regions (e) R2, (f) R1, (g) L2, and 

(h) L1. This process ensures independence of the validation datasets. The dashed grey 

lines are plotted as Y=0.8X and Y=1.2X (positions of 20% error). The correlation 

coefficients (R), root-mean-square errors (RMSE), number of samples (N), and mean 

absolute errors (MAE) are given in each panel. 
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Fig. 10. Absolute biases between AOD derived from ground measurements and 

retrieved from AHI in 2017 for different (a) #6).78, (b) #6).27, (c) ��������, and (d) 

scattering angles. The original DT (red lines) and DTDL (blue lines) algorithms are 

used. The shaded areas indicate standard deviations. The grey bars represent the 

frequency of occurrence of these parameters.  
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